Copied to
clipboard

G = C3.A42order 432 = 24·33

2nd central extension by C3 of A42

metabelian, soluble, monomial, A-group

Aliases: C3.2A42, C22⋊A4⋊C9, C3.A43A4, C242(C3×C9), C221(C9×A4), C24⋊C92C3, (C23×C6).2C32, (C2×C6).2(C3×A4), (C3×C22⋊A4).1C3, (C22×C3.A4)⋊2C3, SmallGroup(432,525)

Series: Derived Chief Lower central Upper central

C1C24 — C3.A42
C1C22C24C23×C6C22×C3.A4 — C3.A42
C24 — C3.A42
C1C3

Generators and relations for C3.A42
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e3=f9=1, eae-1=fbf-1=ab=ba, fcf-1=ac=ca, ad=da, faf-1=b, bc=cb, fdf-1=bd=db, ebe-1=a, ece-1=cd=dc, ede-1=c, ef=fe >

Subgroups: 394 in 71 conjugacy classes, 18 normal (7 characteristic)
C1, C2, C3, C3, C22, C22, C6, C23, C9, C32, A4, C2×C6, C2×C6, C24, C18, C22×C6, C3×C9, C3.A4, C3.A4, C2×C18, C3×A4, C22⋊A4, C23×C6, C2×C3.A4, C9×A4, C22×C3.A4, C24⋊C9, C3×C22⋊A4, C3.A42
Quotients: C1, C3, C9, C32, A4, C3×C9, C3×A4, C9×A4, A42, C3.A42

Smallest permutation representation of C3.A42
On 36 points
Generators in S36
(1 12)(2 24)(3 34)(4 15)(5 27)(6 28)(7 18)(8 21)(9 31)(10 30)(11 22)(13 33)(14 25)(16 36)(17 19)(20 29)(23 32)(26 35)
(1 23)(2 33)(3 14)(4 26)(5 36)(6 17)(7 20)(8 30)(9 11)(10 21)(12 32)(13 24)(15 35)(16 27)(18 29)(19 28)(22 31)(25 34)
(2 13)(3 34)(5 16)(6 28)(8 10)(9 31)(11 22)(14 25)(17 19)(21 30)(24 33)(27 36)
(2 24)(3 14)(5 27)(6 17)(8 21)(9 11)(10 30)(13 33)(16 36)(19 28)(22 31)(25 34)
(1 7 4)(2 8 5)(3 9 6)(10 27 33)(11 19 34)(12 20 35)(13 21 36)(14 22 28)(15 23 29)(16 24 30)(17 25 31)(18 26 32)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)

G:=sub<Sym(36)| (1,12)(2,24)(3,34)(4,15)(5,27)(6,28)(7,18)(8,21)(9,31)(10,30)(11,22)(13,33)(14,25)(16,36)(17,19)(20,29)(23,32)(26,35), (1,23)(2,33)(3,14)(4,26)(5,36)(6,17)(7,20)(8,30)(9,11)(10,21)(12,32)(13,24)(15,35)(16,27)(18,29)(19,28)(22,31)(25,34), (2,13)(3,34)(5,16)(6,28)(8,10)(9,31)(11,22)(14,25)(17,19)(21,30)(24,33)(27,36), (2,24)(3,14)(5,27)(6,17)(8,21)(9,11)(10,30)(13,33)(16,36)(19,28)(22,31)(25,34), (1,7,4)(2,8,5)(3,9,6)(10,27,33)(11,19,34)(12,20,35)(13,21,36)(14,22,28)(15,23,29)(16,24,30)(17,25,31)(18,26,32), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)>;

G:=Group( (1,12)(2,24)(3,34)(4,15)(5,27)(6,28)(7,18)(8,21)(9,31)(10,30)(11,22)(13,33)(14,25)(16,36)(17,19)(20,29)(23,32)(26,35), (1,23)(2,33)(3,14)(4,26)(5,36)(6,17)(7,20)(8,30)(9,11)(10,21)(12,32)(13,24)(15,35)(16,27)(18,29)(19,28)(22,31)(25,34), (2,13)(3,34)(5,16)(6,28)(8,10)(9,31)(11,22)(14,25)(17,19)(21,30)(24,33)(27,36), (2,24)(3,14)(5,27)(6,17)(8,21)(9,11)(10,30)(13,33)(16,36)(19,28)(22,31)(25,34), (1,7,4)(2,8,5)(3,9,6)(10,27,33)(11,19,34)(12,20,35)(13,21,36)(14,22,28)(15,23,29)(16,24,30)(17,25,31)(18,26,32), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36) );

G=PermutationGroup([[(1,12),(2,24),(3,34),(4,15),(5,27),(6,28),(7,18),(8,21),(9,31),(10,30),(11,22),(13,33),(14,25),(16,36),(17,19),(20,29),(23,32),(26,35)], [(1,23),(2,33),(3,14),(4,26),(5,36),(6,17),(7,20),(8,30),(9,11),(10,21),(12,32),(13,24),(15,35),(16,27),(18,29),(19,28),(22,31),(25,34)], [(2,13),(3,34),(5,16),(6,28),(8,10),(9,31),(11,22),(14,25),(17,19),(21,30),(24,33),(27,36)], [(2,24),(3,14),(5,27),(6,17),(8,21),(9,11),(10,30),(13,33),(16,36),(19,28),(22,31),(25,34)], [(1,7,4),(2,8,5),(3,9,6),(10,27,33),(11,19,34),(12,20,35),(13,21,36),(14,22,28),(15,23,29),(16,24,30),(17,25,31),(18,26,32)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)]])

48 conjugacy classes

class 1 2A2B2C3A3B3C···3H6A6B6C6D6E6F9A···9L9M···9R18A···18L
order1222333···36666669···99···918···18
size13391116···163333994···416···1612···12

48 irreducible representations

dim1111133399
type+++
imageC1C3C3C3C9A4C3×A4C9×A4A42C3.A42
kernelC3.A42C22×C3.A4C24⋊C9C3×C22⋊A4C22⋊A4C3.A4C2×C6C22C3C1
# reps142218241212

Matrix representation of C3.A42 in GL6(𝔽19)

100000
010000
001000
000001
000181818
000100
,
100000
010000
001000
000181818
000001
000010
,
010000
100000
181818000
000181818
000001
000010
,
181818000
001000
010000
000010
000100
000181818
,
700000
007000
121212000
000100
000181818
000010
,
1600000
0160000
0016000
000100
000001
000181818

G:=sub<GL(6,GF(19))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,18,1,0,0,0,0,18,0,0,0,0,1,18,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,0,0,0,0,0,18,0,1,0,0,0,18,1,0],[0,1,18,0,0,0,1,0,18,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,18,0,1,0,0,0,18,1,0],[18,0,0,0,0,0,18,0,1,0,0,0,18,1,0,0,0,0,0,0,0,0,1,18,0,0,0,1,0,18,0,0,0,0,0,18],[7,0,12,0,0,0,0,0,12,0,0,0,0,7,12,0,0,0,0,0,0,1,18,0,0,0,0,0,18,1,0,0,0,0,18,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,18,0,0,0,0,0,18,0,0,0,0,1,18] >;

C3.A42 in GAP, Magma, Sage, TeX

C_3.A_4^2
% in TeX

G:=Group("C3.A4^2");
// GroupNames label

G:=SmallGroup(432,525);
// by ID

G=gap.SmallGroup(432,525);
# by ID

G:=PCGroup([7,-3,-3,-3,-2,2,-2,2,63,50,766,326,13613,5298]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^3=f^9=1,e*a*e^-1=f*b*f^-1=a*b=b*a,f*c*f^-1=a*c=c*a,a*d=d*a,f*a*f^-1=b,b*c=c*b,f*d*f^-1=b*d=d*b,e*b*e^-1=a,e*c*e^-1=c*d=d*c,e*d*e^-1=c,e*f=f*e>;
// generators/relations

׿
×
𝔽